The molecular biology of appressorium turgor generation by the rice blast fungus Magnaporthe grisea.

نویسندگان

  • Z-Y Wang
  • J M Jenkinson
  • L J Holcombe
  • D M Soanes
  • C Veneault-Fourrey
  • G K Bhambra
  • N J Talbot
چکیده

The rice blast fungus Magnaporthe grisea develops specialized infection structures known as appressoria, which develop enormous turgor pressure to bring about plant infection. Turgor is generated by accumulation of compatible solutes, including glycerol, which is synthesized in large quantities in the appressorium. Glycogen, trehalose and lipids represent the most abundant storage products in M. grisea conidia. Trehalose and glycogen are rapidly degraded during conidial germination and it is known that trehalose synthesis is required for virulence of the fungus. Lipid bodies are transported to the developing appressoria and degraded at the onset of turgor generation, in a process that is cAMP-dependent. A combined biochemical and genetic approach is being used to dissect the process of turgor generation in the rice blast fungus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring the Biology of Magnaporthe grisea

■ Abstract The blast fungus Magnaporthe grisea causes a serious disease on a wide variety of grasses including rice, wheat, and barley. Rice blast is the most serious disease of cultivated rice and therefore poses a threat to the world’s most important food security crop. Here, I review recent progress toward understanding the molecular biology of plant infection by M. grisea, which involves de...

متن کامل

Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence.

The rice blast fungus Magnaporthe grisea infects its host by forming a specialized infection structure, the appressorium, on the plant leaf. The enormous turgor pressure generated within the appressorium drives the emerging penetration peg forcefully through the plant cuticle. Hitherto, the involvement of cutinase(s) in this process has remained unproven. We identified a specific M. grisea cuti...

متن کامل

A Magnaporthe grisea cyclophilin acts as a virulence determinant during plant infection.

Cyclophilins are peptidyl prolyl cis-trans isomerases that are highly conserved throughout eukaryotes and that are best known for being the cellular target of the immunosuppressive drug cyclosporin A (CsA). The activity of CsA is caused by the drug forming a complex with cyclophilin A and inhibiting the calmodulin-dependent phosphoprotein phosphatase calcineurin. We have investigated the role o...

متن کامل

Magnaporthe grisea Cutinase2 Mediates Appressorium Differentiation and Host Penetration and Is Required for Full Virulence W OA

The rice blast fungus Magnaporthe grisea infects its host by forming a specialized infection structure, the appressorium, on the plant leaf. The enormous turgor pressure generated within the appressorium drives the emerging penetration peg forcefully through the plant cuticle. Hitherto, the involvement of cutinase(s) in this process has remained unproven. We identified a specific M. grisea cuti...

متن کامل

Mstu1, an APSES transcription factor, is required for appressorium-mediated infection in Magnaporthe grisea.

The APSES protein family includes important transcriptional regulators of morphological processes in ascomycetes. We identified a deletion mutant of the APSES protein Mstu1 in Magnaporthe grisea that showed reduced conidiation and mycelial growth. Mstu1 formed a number of appressoria comparable to the wild type, although appressorium formation was delayed. In M. grisea, rapid transfer of conidi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 33 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2005